B Physics at Tevatron Run II

Kin Yip

Integrated Luminosities

290 pb⁻¹ on tape per experiments

- **♣** Data taking efficiency: typically 80-90%
- ***** stable for both experiments

Results in this talk:

CDF analyses: ~65 - 220 pb⁻¹

DØ analyses: ~115 - 250 pb-1

Detectors

Both detectors
Silicon microvertex tracker
Axial solenoid
Central tracking
High rate trigger/DAQ
Calorimeters and muons

CDF

L2 trigger on displaced vertexes Particle ID (TOF and dE/dx) Excellent mass resolution

DØ

Excellent muon ID Excellent tracking acceptance $|\eta| < 2-3$ L3 trigger on impact parameter/L2 impact parameter trigger being commissioned

Hadron colliders challenge

- Large production cross section including $B_s & \Lambda_b$
- Even larger inelastic cross section $(S/B≈10^{-3}) \Rightarrow$ specialized triggers:
 - Single lepton triggers
 - Dilepton triggers such as $J/\psi \rightarrow \mu^+\mu^-$
 - Track triggers moved to L1 (RunII)
 - •In Run II, L2 trigger on displaced tracks using SVX allows CDF to trigger purely hadronic B decays and study such as $B^0 \rightarrow \pi^+\pi^-, B_s \rightarrow D_s^-\pi^+...$
- Precise 2nd vertex reconstruction

$$σ(p\overline{p} \to b\overline{b}) ≈ 150 μb$$
 at 2 TeV
$$σ(e^+e^- \to b\overline{b}) ≈ 7nb$$
 at Z^0

$$σ(e^+e^- \to B\overline{B}) ≈ 1nb$$
 at $\Upsilon(4S)$

B Hadron yields for DØ

Λ_b and B_S masses

To be reprocessed with extended tracking \Rightarrow improve yield by 50%

 $M(Bs) = 5365.50 \pm 1.29 \text{ (stat)} \pm 0.94 \text{ (sys)} \text{ MeV/c}^2$ $M(\Lambda_B) = 5620.4 \pm 1.6 \text{ (stat)} \pm 1.2 \text{ (sys)} \text{ MeV/c}^2$ World's best measurements from CDF

B, Lifetime

$$\tau_{BS} = 1.190 + 0.19 - 0.16$$
 (stat) ± 0.14 (sys) ps

$$\tau_{\rm Bs}/\tau_0 = 0.79 \pm 0.14$$

$$\tau_{BS} = 1.330^{+0.148}_{-0.129} \text{ (stat)} \pm 0.02 \text{ (sys)} \text{ ps}$$

$$\tau_{Bs}/\tau_0 = 0.89 \pm 0.10$$

$\tau(B^+)/\tau(B^0)$ from semileptonic decays

From $B \rightarrow \mu^+ \nu D^* X$ and $B \rightarrow \mu^+ \nu D^0 X$ and sample compositions based on measured branching fraction & isospin relations, one can measure the ratio $\tau(B^+)/\tau(B^0)$.

Additional inputs include:

- **4** K-factors (from simulation)
- **4** Relative reconstruction efficiencies for different B decay modes (from simulation)
- **4** Decay length resolution (from simulation)
- **♣** fixing τ (B⁺) = 1.674 ± 0.018 ps [PDG]

DØ Runll Preliminary, Luminosity = 250 pb⁻¹

DØ Runll Preliminary, Luminosity = 250 pb⁻¹

Preliminary result:

$$\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021 \text{ (stat)} \pm 0.022 \text{ (syst)}$$

one of the most precise measurements

Λ_b Lifetime

Largest systematic error is from an asymmetric track reconstruction in the COT $\sim 26 \ \mu m$

Work is in progress to add more data and use better track reconstruction

 $\tau(\Lambda_b)$ measurement in $D\emptyset$ is in progress

B⁰/B⁰ mixing: results from DØ

We use our large sample of semileptonic B0/B0 decays to measure Δm_d :

- ♣ This analysis uses opposite-side muon tag
- **4** Preliminary results:

$$\Delta m_d = 0.506 \pm 0.055 \text{ (stat)} \pm 0.049 \text{ (syst) ps}^{-1}$$

- **4** Consistent with world average: $0.502 \pm 0.007 \text{ ps}^{-1}$
- **♣** Tagging efficiency: $4.8 \pm 0.2 \%$
- **4** Tagging purity: $73.0 \pm 2.1 \%$

Work in progress:

- other tagging methods:
 - jet charge, same side tagging
- add more decay channels

Towards B_s mixing

Semileptonic decays:

- Very good statistics but poorer time resolution
- If $\Delta m_s \cong 15 \text{ ps}^{-1}$ expect a 1-2 σ measurement with 500 pb⁻¹

Towards B_s mixing

CDF Run II Preliminary, L = 119 pb ⁻¹

Fully reconstructed hadronic decays:

- **Poorer statistics**
- **Excellent time resolution**
- need a few fb⁻¹ of data to reach

 $\Delta ms \cong 18 \text{ ps}^{-1}$

CDF "golden channel": $B_s \rightarrow D_s \pi$ maximum proper time resolution to resolve fast oscillations.

$$\P$$
 $\sigma_{P_T(B)}/P_T(B) \approx 0.5\%$

 $D_s^-\pi^+$ Mass [GeV/c²] Reconstructed the signal with yield / lumi = 0.7/pb⁻¹ and S/B ~ 2

$BR(Bs \rightarrow Ds\pi)$ measured:

$$\sigma_t = 67 \text{ fs}$$

$$\frac{f_s \cdot BR(B_s^0 \to D_s^- \pi^+)}{f_d \cdot BR(B_d^0 \to D^- \pi^+)} = 0.35 \pm 0.05(stat) \pm 0.04(syst) \pm 0.09(BR)$$

Both CDF & DØ have confirmed BELLE's discovery of the X(3872)

 $M_X = 3871.3 \pm 0.7 \text{ (stat)} \pm 0.4 \text{ (sys)} \text{ MeV/c}^2$

 $\Delta M = 774.9 \pm 3.1 (stat) \pm 3.0 (sys) \text{ MeV/c}^2$

 $\Delta M + M(J/\psi) = 3871.8 \pm 4.3 \text{ MeV/c}^2$

Belle: $M_X = 3872.0 \pm 0.6 \text{ (stat)} \pm 0.5 \text{ (sys)} \text{ MeV/c}^2$

$X(3872) - \psi(2S)$ comparison

- **4** Is the X charmonium, or an exotic meson molecule?
- **4** No significant differences between $\psi(2S)$ and X have been observed yet
- **+** From isolation and decay length comparisons, the production of X has the same mixture of prompt and long-lived fractions as the $\psi(2S)$

Rare decays $-\mathbf{B}_{d,s} \rightarrow \mu\mu$

- + BR(B_s → μμ) ~ 10⁻⁹ suppressed in SM (SUSY physics two orders of magnitude enhancement)
- **4** Blind analysis optimized for 300-400 pb⁻¹ ($\sim 1 \pm 0.3$ expected bkg)

Limits at 90% C.L. BR(B_s $\rightarrow \mu^{+} \mu^{-}) < 5.8 \bullet 10^{-7}$ BR(B_d $\rightarrow \mu^{+} \mu^{-}) < 1.5 \bullet 10^{-7}$

 B_s factor 3 better than best published limit (Run I) B_d slightly better than Belle's at LP03: 1.6 E-7@90%CL Still room for improvement: \uparrow Acceptance & \downarrow bkgs

Rare decays - $B_s \rightarrow \mu\mu$

Optimised cuts using Random Grid Search [Prosper, CHEP'95; Punzi, CSPP'03] based on the mass sidebands. After optimisation:

- \blacksquare expect 7.3 \pm 1.8 background events in signal region
- **♣** signal efficiency: 30 %

The analysis has not been unblinded yet (signal region still hidden).

It is still being optimized (without bias) and expected to improve ...

Expected limit (Feldman/Cousins):

Br(B_s
$$\rightarrow \mu^+ \mu^-$$
) < 9.1 · 10⁻⁷ @ 95 % CL (stat only)

$$Br(B_s \to \mu^+ \mu^-) < 1.0 \cdot 10^{-6} @ 95 \% CL (stat + syst)$$

(expected signal has been normalised to $B^{\pm} \rightarrow J/\Psi K^{\pm}$)

CP Violation - Two body charmless decays B → h⁺h⁻

Time dependent asymmetry $B_d \to \pi\pi$ (α angle) and $B_s \to KK$ (γ angle) Direct CP asymmetry of the self tagging modes $B_d \to \pi K$ and $B_s \to K\pi$

1. Extracting the signal

Displaced track trigger at L2 gives CDF accessibility to rare hadronic decays with high S/B.

- 2. Separation of the components
- + dE/dx ~ 1.3σ for K/p separation
- **4** Statistical separation is still possible
- **Unbinned log-likelihood fit defined including** kinematical variables & dE/dx

Mode	Yield (65 pb ⁻¹)
$B^0 o K\pi$	148 \pm 17(stat.) \pm 17(syst)
$B^0 \to \pi \; \pi$	$39\pm14(\text{stat.})\pm17(\text{syst})$
$B_s \rightarrow KK$	90±17(stat.) ± 17(syst)
$B_s \to K\pi$	3±11(stat.) ± 17(syst)

Observation of B $\rightarrow \mu \nu D^{**} X$

Start from our "B $\rightarrow \mu \nu D^{*-}$ + anything" sample, and "reconstruct another π^{+} ".

Look at mass of $D^{*-}\pi^{+}$ system.

Excess in right-sign combinations semileptonic B decays we can be interpreted as interfering D_1^0 and D_2^{*0} . mixing, ... measurements.

MeV L = 0 L = 1 2800 $J^P = 0^ 1^ 0^+$ 1^+ 1^+ 2^+ 2^+ 1^+ 1

Spectroscopy of D mesons

We study D_1^0 , D_2^{*0} produced in semileptonic B decays. \Rightarrow Constrain D spectroscopy; also improve understanding of the sample of semileptonic B decays we use for lifetime, mixing measurements

From topological analyses at LEP we know:

Br(B \rightarrow D*+ π - $\mu \nu X$) = 0.48 \pm 0.10 %

DØ's preliminary result constrains the resonant contribution

 $Br(B \to \{D_1^0, D_2^{*0}\} \mu \nu X) \cdot Br(\{D_1^0, D_2^{*0}\} \to D^{*+} \pi^-) = 0.280 \pm 0.021 \text{ (stat)} \pm 0.088 \text{ (syst)}\%$

Work in progress: extract separate amplitude, phase for each state.

Summary

Excellent B physics prospects for Run II at Tevatron:

- **→** After 2003 fall shutdown, Tevatron has enjoyed substantial improvement and performance is steadily ramping.
- Tevatron offers a broad range of B physics programs.
- \blacksquare Both experiments have confirmed the discovery of X(3872).
- **Competitive mass & lifetime measurements**
 - \blacksquare eg. best in $\Lambda_B \& B_s$ mass measurements
- **▶** Both expts. are moving to attack B mixing in semi-leptonic & hadronic decays.
- Rare decays: look for physics beyond the standard model.
 - ♣ Set best limits in BR(B_s $\rightarrow \mu^+ \mu^-$) & BR(B_d $\rightarrow \mu^+ \mu^-$)

BACKUP

B±./B⁰ Lifetimes

B⁺:
$$c\tau = 495 \pm 25(stat)^{+31}_{-37}(sys)$$
 μm
B⁰: $c\tau = 453^{+58}_{-51}(stat) \pm 60(sys)$ μm
 $\tau_+/\tau_0 = 1.09^{+0.15}_{-0.14}(stat)^{+0.16}_{-0.17}(sys)$

B⁺: $c\tau = 499\pm12(stat)\pm6(sys) \mu m$ B⁰: $c\tau = 446\pm15(stat)\pm8(sys) \mu m$ $\tau_+/\tau_0=1.119\pm0.046(stat)\pm0.014(sys)$

B Lifetime from Inclusive B \rightarrow J/ ψ +X

F: correction factor to use the $pT(J/\psi)$ to estimate the momentum of the B to find proper time. Obtained from Monte Carlo

$$\langle \tau \rangle = 1.564 \pm 0.014$$
 ps (PDG)

$$\langle \tau \rangle = 1.562 \pm 0.013 \pm 0.045 \text{ ps}$$

J/ψ from B's = 18% ... similar % seen at CDF

Correction factor leads to the major systematic error